Introducing Networks and
Protocols

In this chapter, we will review the fundamentals of computer networking.
We'll look at abstract models that attempt to explain the main concerns of
networking, and we'll explain the operation of the primary network protocol,
the Internet Protocol. We'll look at address families and end with writing
programs to list your computer's local IP addresses.

The following topics are covered in this chapter:

e Network programming and C

e OSI layer model

e TCP/IP reference model

The Internet Protocol

IPv4 addresses and IPv6 addresses

Domain names

Internet protocol routing

Network address translation

The client-server paradigm

Listing your IP addresses programmatically from C

Technical requirements

Most of this chapter focuses on theory and concepts. However, we do
introduce some sample programs near the end. To compile these programs,
you will need a good C compiler. We recommend MinGW on Windows and
GCC on Linux and macOS. See zppenaix s, Setting Up Your C Compiler On
Windows, rppenaix c, Setting Up Your C Compiler On Linux, and zppendix o,
Setting Up Your C Compiler On macOS, for compiler setup.

The code for this book can be found at: nctps://github. con/codeplea/mands—on-Netwo

rk-Programming-with-C.

From the command line, you can download the code for this chapter with the
following command:

git clone https://github.com/codeplea/Hands-On-Network-Programming-with-C

cd Hands-On-Network-Programming-with-C/chap01

On Windows, using MinGW, you can use the following command to compile
and run code:

gcc win_list.c -o win_list.exe -liphlpapi -lws2_32

win list
On Linux and macOS, you can use the following command:

gcc unix list.c -o unix list

./unix_list

The internet and C

Today, the internet needs no introduction. Certainly, millions of desktops,
laptops, routers, and servers are connected to the internet and have been for
decades. However, billions of additional devices are now connected as well
—mobile phones, tablets, gaming systems, vehicles, refrigerators, television
sets, industrial machinery, surveillance systems, doorbells, and even light
bulbs. The new Internet of Things (IoT) trend has people rushing to connect
even more unlikely devices every day.

Over 20 billion devices are estimated to be connected to the internet now.
These devices use a wide variety of hardware. They connect over an
Ethernet connection, Wi-Fi, cellular, a phone line, fiber optics, and other
media, but they likely have one thing in common; they likely use C.

The use of the C programming language 1s ubiquitous. Almost every network
stack is programmed in C. This is true for Windows, Linux, and macOS. If
your mobile phone uses Android or 10S, then even though the apps for these
were programmed in a different language (Java and Objective C), the kernel
and networking code was written in C. It is very likely that the network
routers that your internet data goes through are programmed in C. Even if the
user interface and higher-level functions of your modem or router are
programmed in another language, the networking drivers are still probably
implemented in C.

Networking encompasses concerns at many different abstraction levels. The
concerns your web browser has with formatting a web page are much
different than the concerns your router has with forwarding network packets.
For this reason, it is useful to have a theoretical model that helps us to
understand communications at these different levels of abstraction. Let's look
at these models now.

OSI layer model

It's clear that if all of the disparate devices composing the internet are going
to communicate seamlessly, there must be agreed-upon standards that define
their communications. These standards are called protocols. Protocols
define everything from the voltage levels on an Ethernet cable to how a JPEG
image 1s compressed on a web page. It's clear that, when we talk about the
voltage on an Ethernet cable, we are at a much different level of abstraction
compared to talking about the JPEG 1mage format. If you're programming a
website, you don't want to think about Ethernet cables or Wi-Fi frequencies.
Likewise, 1f you're programming an internet router, you don't want to have to
worry about how JPEG images are compressed. For this reason, we break
the problem down into many smaller pieces.

One common method of breaking down the problem is to place levels of
concern into layers. Each layer then provides services for the layer on top of
it, and each upper layer can rely on the layers underneath it without concern
for how they work.

The most popular layer system for networking is called the Open Systems
Interconnection model (OSI model). It was standardized in 1977 and is
published as ISO 7498. It has seven layers:

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

Let's understand these layers one by one:

Physical (1): This is the level of physical communication in the real
world. At this level, we have specifications for things such as the
voltage levels on an Ethernet cable, what each pin on a connector is for,
the radio frequency of Wi-Fi, and the light flashes over an optic fiber.
Data Link (2): This level builds on the physical layer. It deals with
protocols for directly communicating between two nodes. It defines
how a direct message between nodes starts and ends (framing), error
detection and correction, and flow control.

Network layer (3): The network layer provides the methods to transmit
data sequences (called packets) between nodes in different networks. It
provides methods to route packets from one node to another (without a
direct physical connection) by transferring through many intermediate
nodes. This is the layer that the Internet Protocol is defined on, which
we will go into in some depth later.

Transport layer (4): At this layer, we have methods to reliably deliver
variable length data between hosts. These methods deal with splitting
up data, recombining it, ensuring data arrives in order, and so on.

The Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) are commonly said to exist on this layer.

e Session layer (5): This layer builds on the transport layer by adding
methods to establish, checkpoint, suspend, resume, and terminate
dialogs.

o Presentation layer (6): This is the lowest layer at which data structure
and presentation for an application are defined. Concerns such as data
encoding, serialization, and encryption are handled here.

o Application layer (7): The applications that the user interfaces with
(for example, web browsers and email clients) exist here. These
applications make use of the services provided by the six lower layers.

In the OSI model, an application, such as a web browser, exists in the
application layer (layer 7). A protocol from this layer, such as HTTP used to
transmit web pages, doesn't have to concern itself with how the data is being
transmitted. It can rely on services provided by the layer underneath it to
effectively transmit data. This 1s 1llustrated in the following diagram:

= =
I Application | - _A\bstracted Connection » | Application i
1 A
: Presentation Presentation :
!]
I Session Session |
| M
: Transport Transport !
I
!]
I Network Network
| 1
: Data Link Data Link :
!]
I Physical Physical
1 M
I

Actual Connection

It should be noted that chunks of data are often referred to by different names
depending on the OSI layer they're on. A data unit on layer 2 is called a
frame, since layer 2 is responsible for framing messages. A data unit on
layer 3 is referred to as a packet, while a data unit on layer 4 is a segment
if it is part of a TCP connection or a datagram if it is a UDP message.

In this book, we often use the term packet as a generic term to refer to a data
unit on any layer. However, segment will only be used in the context of a
TCP connection, and datagram will only refer to UDP datagrams.

As we will see in the next section, the OSI model doesn't fit precisely with
the common protocols in use today. However, it is still a handy model to
explain networking concerns, and it is still in widespread use for that
purpose today.

TCP/IP layer model

The TCP/IP protocol suite is the most common network communication
model in use today. The TCP/IP reference model differs a bit from the OSI
model, as it has only four layers instead of seven.

The following diagram illustrates how the four layers of the TCP/IP model
line up to the seven layers of the OSI model:

OSI| Model TCP/IP Model
7 Application
Process/
Presentation Application
Session
Transport Host-to-Host
Network Internet
Data Link Network
1
Access
1 Physical

Notably, the TCP/IP model doesn't match up exactly with the layers in the
OSI model. That's OK. In both models, the same functions are performed;
they are just divided differently.

The TCP/IP reference model was developed after the TCP/IP protocol was
already in common use. It differs from the OSI model by subscribing a less
rigid, although still hierarchical, model. For this reason, the OSI model is
sometimes better for understanding and reasoning about networking concerns,
but the TCP/IP model reflects a more realistic view of how networking is
commonly implemented today.

The four layers of the TCP/IP model are as follows:

o Network Access layer (1): On this layer, physical connections and data
framing happen. Sending an Ethernet or Wi-Fi packet are examples of
layer 1 concerns.

o Internet layer (2): This layer deals with the concerns of addressing
packets and routing them over multiple interconnection networks. It's at
this layer that an IP address is defined.

e Host-to-Host layer (3): The host-to-host layer provides two protocols,
TCP and UDP, which we will discuss in the next few chapters. These
protocols address concerns such as data order, data segmentation,
network congestion, and error correction.

e Process/Application layer (4): The process/application layer is where
protocols such as HTTP, SMTP, and FTP are implemented. Most of the
programs that feature in this book could be considered to take place on
this layer while consuming functionality provided by our operating
system's implementation of the lower layers.

Regardless of your chosen abstraction model, real-world protocols do work
at many levels. Lower levels are responsible for handling data for the higher
levels. These lower-level data structures must, therefore, encapsulate data
from the higher levels. Let's look at encapsulating data now.

Data encapsulation

The advantage of these abstractions is that, when programming an
application, we only need to consider the highest-level protocol. For
example, a web browser needs only to implement the protocols dealing
specifically with websites—HTTP, HTML, CSS, and so on. It does not need
to bother with implementing TCP/IP, and it certainly doesn't have to
understand how an Ethernet or Wi-Fi packet is encoded. It can rely on ready-
made implementations of the lower layers for these tasks. These
implementations are provided by the operating system (for example,
Windows, Linux, and macOS).

When communicating over a network, data must be processed down through
the layers at the sender and up again through the layers at the receiver. For
example, if we have a web server, Host A, which is transmitting a web page
to the receiver, Host B, it may look like this:

Host A

<L
[— O G

Application

Presentation

Session

Transport

Network

Data Link

Physical

The web page contains a few paragraphs of text, but the web server doesn't
only send the text by itself. For the text to be rendered correctly, it must be

MO|4 B1eq

encoded in an HTML structure:

In some cases, the text is already preformatted into HTML and saved that

—_-.--Dataflow_ _ ___

HTML

Text

Application

Presentation

Session

Transport

Network

Data Link

Physical

way but, in this example, we are considering a web application that

dynamically generates the HTML, which 1s the most common paradigm for
dynamic web pages. As the text cannot be transmitted directly, neither can the
HTML. It instead must be transmitted as part of an HTTP response. The
web server does this by applying the appropriate HT'TP response header to

the HTML:

HTTP

HTML

Text

The HTTP is transmitted as part of a TCP session. This isn't done explicitly
by the web server, but is taken care of by the operating system's TCP/IP
stack:

TCP

HTTP

HTML

Text

The TCP packet is routed by an IP packet:

IP

TCP

HTTP

HTML

Text

This 1s transmitted over the wire in an Ethernet packet (or another
protocol):

Ethernet

IP

TCP

HTTP

HTML

Text

Luckily for us, the lower-level concerns are handled automatically when we
use the socket APIs for network programming, It is still useful to know what
happens behind the scenes. Without this knowledge, dealing with failures or
optimizing for performance is difficult if not impossible.

With some of the theory out of the way, let's dive into the actual protocols
powering modern networking.

Internet Protocol

Twenty years ago, there were many competing networking protocols. Today,
one protocol is overwhelmingly common—the Internet Protocol. It comes in
two versions—IPv4 and IPv6. [Pv4 is completely ubiquitous and deployed
everywhere. If you're deploying network code today, you must support [Pv4
or risk that a significant portion of your users won't be able to connect.

IPv4 uses 32-bit addresses, which limits it to addressing no more than 232 or
4,294,967,296 systems. However, these 4.3 billion addresses were not
initially assigned efficiently, and now many Internet Service Providers
(ISPs) are forced to ration IPv4 addresses.

IPv6 was designed to replace IPv4 and has been standardized by the
Internet Engineering Task Force (IETF) since 1998. It uses a 128-bit
address, which allows it to address a theoretical 2128 =
340,282,366,920,938,463,463,374,607,431,768,211,456, or about a 3.4 x
108 addresses.

Today, every major desktop and smartphone operating system supports both
IPv4 and IPv6 in what is called a dual-stack configuration. However, many
applications, servers, and networks are still only configured to use IPv4.
From a practical standpoint, this means that you need to support [Pv4 in
order to access much of the internet. However, you should also support IPv6
to be future-proof and to help the world to transition away from IPv4.

What is an address?

All Internet Protocol traffic routes to an address. This is similar to how
phone calls must be dialed to phone numbers. IPv4 addresses are 32 bits
long. They are commonly divided into four 8-bit sections. Each section is
displayed as a decimal number between o and 255 inclusive and is delineated
by a period.

Here are some examples of [Pv4 addresses:

® (0.0.0.0

® 127.0.0.1

® 10.0.0.0

® 172.16.0.5
® 192.168.0.1
® 192.168.50.1

® 255.255.255.255

A special address, called the loopback address, is reserved at 127.0.0.1. This
address essentially means establish a connection to myself. Operating
systems short-circuit this address so that packets to it never enter the network
but instead stay local on the originating system.

IPv4 reserves some address ranges for private use. If you're using [Pv4
through a router/NAT, then you are likely using an IP address in one of these
ranges. These reserved private ranges are as follows:

® 10.0.0.0 t0 10.255.255.255
® 172.16.0.0 t0 172.31.255.255

® 192.168.0.0 10 192.168.255.255

The concept of IP address ranges is a useful one that comes up many times in
networking. It's probably not surprising then that there is a shorthand notation
for writing them. Using Classless Inter-Domain Routing (CIDR) notation,
we can write the three previous address ranges as follows:

® 10.0.0.0/8
® 172.16.0.0/12

® 192.168.0.0/16

CIDR notation works by specifying the number of bits that are fixed. For
example, 10.0.0.0/8 specifies that the first eight bits of the 10.0.0.0 address are
fixed, the first eight bits being just the first 10. part; the remaining o.0.0 part of
the address can be anything and still be on the 10.0.0.0/8 block.

Therefore, 10.0.0.0/8 encompasses 10.0.0.0 through 10.255.255.255.

IPv6 addresses are 128 bits long. They are written as eight groups of four
hexadecimal characters delineated by colons. A hexadecimal character can
be from 0-9 or from a-f. Here are some examples of IPv6 addresses:

® (0000:0000:0000:0000:0000:0000:0000:0001
® 2001:0db8:0000:0000:0000:£f£f00:0042:8329
® fe80:0000:0000:0000:75f4:ac69:5fa7:67£9

® ffff:ffff:ffff:ffff:ffff:ffffffff:ff~ref

Note that the standard is to use lowercase letters in IPv6 addresses. This is
in contrast to many other uses of hexadecimal in computers.

There are a couple of rules for shortening IPv6 addresses to make them
easier. Rule 1 allows for the leading zeros in each section to be omitted (for
example, oars = avs). Rule 2 allows for consecutive sections of zeros to be
replaced with a double colon (::). Rule 2 may only be used once in each
address; otherwise, the address would be ambiguous.

Applying both rules, the preceding addresses can be shortened as follows:

o ::1
® 2001:db8::££f00:42:8329
® fe80::75f4:2c69:5fa7:67£9

® ffff:ffff:ffff:ffff:ffff:ffffffffff~ref

Like IPv4, IPv6 also has a loopback address. It is ::1.

Dual-stack implementations also recognize a special class of [Pv6 address
that map directly to an IPv4 address. These reserved addresses start with 80
zero bits, and then by 16 one bits, followed by the 32-bit IPv4 address. Using
CIDR notation, this block of address 1S ::ffff:0:0/96.

These mapped addresses are commonly written with the first 96 bits in IPv6
format followed by the remaining 32 bits in [Pv4 format. Here are some
examples:

IPv6 Address Mapped IPv4 Address
::fff£:10.0.0.0 10.0.0.0

c:ff£f£:172.16.0.5 172.16.0.5
::fff£f:192.168.0.1 192.168.0.1
c:ff££:192.168.50.1 192.168.50.1

You may also run into IPv6 site-local addresses. These site-local addresses
are in the eco::/10 range and are for use on private local networks. Site-local
addresses have now been deprecated and should not be used for new
networks, but many existing implementations still use them.

Another address type that you should be familiar with are link-local
addresses. Link-local addresses are usable only on the local link. Routers
never forward packets from these addresses. They are useful for a system to
accesses auto-configuration functions before having an assigned IP address.
Link-local addresses are in the [IPv4 169.254.0.0/16 address block or the [Pv6
re50::/10 address block.

It should be noted the IPv6 introduces many additional features over IPv4
besides just a greatly expanded address range. [Pv6 addresses have new
attributes, such as scope and lifetime, and it is normal for IPv6 network
interfaces to have multiple IPv6 addresses. IPv6 addresses are used and
managed differently than IPv4 addresses.

Regardless of these differences, in this book, we strive to write code that
works well for both IPv4 and IPv6.

If you think that IPv4 addresses are difficult to memorize, and IPv6 addresses
impossible, then you are not alone. Luckily, we have a system to assign
names to specific addresses.

Domain names

The Internet Protocol can only route packets to an IP address, not a name. So,
if you try to connect to a website, such as exanpie.com, your system must first
resolve that domain name, exampie.com, into an IP address for the server that
hosts that website.

This 1s done by connecting to a Domain Name System (DNS) server. You
connect to a domain name server by knowing in advance its IP address. The
IP address for a domain name server is usually assigned by your ISP.

Many other domain name servers are made publicly available by different
organizations. Here are a few free and public DNS servers:

DNS Provider IPv4 Addresses IPv6 Addresses
Cloudflare 1.1.1.1 1.1.1.1 2606:4700:4700::1111

1.0.0.1 2606:4700:4700: :1001
FreeDNS 37.235.1.174

37.235.1.177

Google Public DNS 8.8.8.8 2001:4860:4860::8888
8.8.4.4 2001:4860:4860: : 8844

OpenDNS 208.67.222.222 2620:0:ccc: 12
208.67.220.220 2620:0:ced: 12

To resolve a hostname, your computer sends a UDP message to your domain
name server and asks it for an AAAA-type record for the domain you're
trying to resolve. If this record exists, an [Pv6 address is returned. You can
then connect to a server at that address to load the website. If no AAAA
record exists, then your computer queries the server again, but asks for an A

record. If this record exists, you will receive an IPv4 address for the server.
In many cases, a site will publish an A record and an AAAA record that
route to the same server.

It is also possible, and common, for multiple records of the same type to
exist, each pointing to a different address. This is useful for redundancy in
the case where multiple servers can provide the same service.

We will see a lot more about DNS queries in chapter s, Hostname Resolution
and DNS.

Now that we have a basic understanding of IP addresses and names, let's
look into detail of how IP packets are routed over the internet.

Internet routing

If all networks contained only a maximum of only two devices, then there
would be no need for routing. Computer A would just send its data directly
over the wire, and computer B would receive it as the only possibility:

Direct Connection

The internet today has an estimated 20 billion devices connected. When you
make a connection over the internet, your data first transmits to your local
router. From there, it is transmitted to another router, which is connected to
another router, and so on. Eventually, your data reaches a router that is
connected to the receiving device, at which point, the data has reached its
destination:

Routed Connection =

PN BN

Router 1

Router 5

Router 3

Imagine that each router in the preceding diagram is connected to tens,
hundreds, or even thousands of other routers and systems. It's an amazing feat
that IP can discover the correct path and deliver traffic seamlessly.

Windows includes a utility, tracert, which lists the routers between your
system and the destination system.

Here is an example of using the tracert command on Windows 10 to trace the
route to example.con:

|

C:\» tracert examp

Tracing route to example.com [93.184,216.34]
over a maximum of 30 hops:

1 dm <dm <dms 192.168.50.1

2 : Request timed out.

3 Request timed out.

4 2ms 2 ms 1 ms my.Jjetpack [192.168.1.1]
5 1M9ms 47 ms 5 172.26.96.169

6 66ms 39ms 5 107.79.227.124

Request timed out.
58ms 7Ims s 12.83.186.145
6lms 40ms 1gs.1p. att.net [12.122.133.33]
10 78ms 38ms
11 1l6ms 19 ms 5 225
12 76ms 40 ms 5 93.184,216.34

Trace complete.
PS Ci\s

As you can see from the example, there are 11 hops between our system and
the destination system (exampie.com, 93.184.216.34). The IP addresses are listed
for many of these intermediate routers, but a few are missing with the request
timed out Message. This usually means that the system in question doesn't
support the part of the Internet Control Message Protocol (ICMP) protocol
needed. It's not unusual to see a few such systems when running «racert.

In Unix-based systems, the utility to trace routes is called traceroute. You
WOUld use 1t llke traceroute example.com, for example, but the information
obtained 1s essentially the same.

More information on tracert and traceroute can be found in chapter 12, Network
Monitoring and Security.

Sometimes, when IP packets are transferred between networks, their
addresses must be translated. This is especially common when using IPv4.
Let's look at the mechanism for this next.

Local networks and address
translation

It's common for households and organizations to have small Local Area
Networks (LANSs). As mentioned previously, there are [Pv4 addresses ranges
reserved for use in these small local networks.

These reserved private ranges are as follows:

® 10.0.0.0 t0 10.255.255.255
® 172.16.0.0 tO 172.31.255.255
® 192.168.0.0 tO 192.168.255.255

When a packet originates from a device on an IPv4 local network, 1t must
undergo Network Address Translation (NAT) before being routed on the
internet. A router that implements NAT remembers which local address a
connection is established from.

The devices on the same LAN can directly address one another by their local
address. However, any traffic communicated to the internet must undergo
address translation by the router. The router does this by modifying the source
IP address from the original private LAN IP address to its public internet [P
address:

example.com

IP Packet IP Packet
CCC L
From: From: [ISR R G4
— 192.168.5050 107.77.07.95
— . . / 03.184.216.34
0: Q:
192.168.50.50 "\ 9318421634 93.184.21634
Router

192.168.1.1 107.77.07.95
Router Private IP Router Public IP

Likewise, when the router receives the return communication, it must modify
the destination address from its public IP to the private IP of the original
sender. It knows the private IP address because it was stored in memory after
the first outgoing packet:

example.com
E [P Packet [P Packet —r——
: From: From: 0<=<<<<<<<<<<<<<<
19-3.184.216.34 -E|J-3.184.216.34 / 93.184.216.34
0. Q:
192.168.50.50 W 192.1685050 107.77.07.95
Router
192.168.1.1 107.77.07.95
Router Private IP Router Public IP

Network address translation can be more complicated than it first appears. In
addition to modifying the source IP address in the packet, it must also update
the checksums in the packet. Otherwise, the packet would be detected as
containing errors and discarded by the next router. The NAT router must also
remember which private IP address sent the packet in order to route the reply.

Without remembering the translation address, the NAT router wouldn't know
where to send the reply to on the private network.

NATs will also modify the packet data in some cases. For example, in the File
Transfer Protocol (FTP), some connection information is sent as part of the
packet's data. In these cases, the NAT router will look at the packet's data in
order to know how to forward future incoming packets. IPv6 largely avoids
the need for NAT, as it is possible (and common) for each device to have its
own publicly-addressable address.

You may be wondering how a router knows whether a message is locally
deliverable or whether it must be forwarded. This is done using a netmask,
subnet mask, or CIDR.

Subnetting and CIDR

IP addresses can be split into parts. The most significant bits are used to
identify the network or subnetwork, and the least significant bits are used to
identify the specific device on the network.

This is similar to how your home address can be split into parts. Your home
address includes a house number, a street name, and a city. The city is
analogous to the network part, the street name could be the subnetwork part,
and your house number is the device part.

[Pv4 traditionally uses a mask notation to identify the IP address parts. For
example, consider a router on the 10.0.0.0 network with a subnet mask of
255.255.255.0. This router can take any incoming packet and perform a bitwise
ano operation with the subnet mask to determine whether the packet belongs
on the local subnet or needs to be forwarded on. For example, this router
receives a packet to be delivered to 10.0.0.105. It does a bitwise ano operation
on this address with the subnet mask of 255.255.255.0, which produces 10.0.0.0.
That matches the subnet of the router, so the traffic 1s local. If, instead, we
consider a packet destined for 10.0.15.22, the result of the bitwise AND with
the subnet mask 1s 10.0.15.0. This address doesn't match the subnet the router
1s on, and so it must be forwarded.

IPv6 uses CIDR. Networks and subnetworks are specified using the CIDR
notation we described earlier. For example, if the IPv6 subnet is /112, then the
router knows that any address that matches on the first 112 bits is on the local
subnet.

So far, we've covered only routing with one sender and one receiver. While
this 1s the most common situation, let's consider alternative cases too.

Multicast, broadcast, and anycast

When a packet is routed from one sender to one receiver, it uses unicast
addressing. This is the simplest and most common type of addressing. All of
the protocols we deal with in this book use unicast addressing.

Broadcast addressing allows a single sender to address a packet to all
recipients simultaneously. It is typically used to deliver a packet to every
receiver on an entire subnet.

If a broadcast is a one-to-all communication, then multicast is a one-to-many
communication. Multicast involves some group management, and a message
1s addressed and delivered to members of a group.

Anycast addressed packets are used to deliver a message to one recipient
when you don't care who that recipient is. This is useful if you have several
servers that provide the same functionality, and you simply want one of them
(you don't care which) to handle your request.

IPv4 and lower network levels support local broadcast addressing. [Pv4
provides some optional (but commonly implemented) support for
multicasting. [Pv6 mandates multicasting support while providing additional
features over IPv4's multicasting. Though IPv6 is not considered to
broadcast, its multicasting functionality can essentially emulate it.

It's worth noting that these alternative addressing methods don't generally
work over the broader internet. Imagine if one peer was able to broadcast a
packet to every connected internet device. It would be a mess!

If you can use IP multicasting on your local network, though, it is worthwhile
to implement 1t. Sending one IP level multicast conserves bandwidth
compared to sending the same unicast message multiple times.

However, multicasting is often done at the application level. That is, when
the application wants to deliver the same message to several recipients, it
sends the message multiple times — once to each recipient. In crapter 3, An In-
Depth Overview of TCP Connections, we build a chat room. This chat room
could be said to use application-level multicasting, but it does not take
advantage of IP multicasting.

We've covered how messages are routed through a network. Now, let's see
how a message knows which application is responsible for it once it arrives
at a specific system.

Port numbers

An IP address alone 1sn't quite enough. We need port numbers. To return to
the telephone analogy, if IP addresses are phone numbers, then port numbers
are like phone extensions.

Generally, an IP address gets a packet routed to a specific system, but a port
number is used to route the packet to a specific application on that system.

For example, on your system, you may be running multiple web browsers, an
email client, and a video-conferencing client. When your computer receives
a TCP segment or UDP datagram, your operating system looks at the
destination port number in that packet. That port number is used to look up
which application should handle it.

Port numbers are stored as unsigned 16-bit integers. This means that they are
between o and ss, 535 inclusive.

Some port numbers for common protocols are as follows:

Port
Number Protocol
2o 21 TCP f;;;;ransfer Protocol
chapter 11, EStablishing
22 TCP | Secure Shell (SSH) SSH Connections with
libssh
23 TCP | Telnet
. TCP Simple Mail Transfer chapter 8, Making Your
Protocol (SMTP) Program Send Email
53 UDP | Domain Name System chapter 5, Hostname

(DNS) Resolution and DNS
Chapter 6, Bulldmg a
Hypertext Transfer Simple Web Client
80 TCP 1 protocol (HTTP
rotoco () Chapter 7, Bl/llldlnga
Simple Web Server
Post Office Protocol
TCP ’
o Version 3 (POP3)
Internet Message
143 TCP | Access Protocol
(IMAP)
Internet Relay Chat
194 TCP (IRC)
Chapter 9, Loadmg
Secure Web Pages with
" tcp | HTTP over TLS/SSL 1 prrp 1 Openssi
(HTTPS) :
chapter 10, Implementing
a Secure Web Server
IMAP over TLS/SSL
TCP
e Pl (maps)
POP3 over TLS/SSL
995 TCP (POP3S)

Each of these listed port numbers is assigned by the Internet Assigned
Numbers Authority (IANA). They are responsible for the official
assignments of port numbers for specific protocols. Unofficial port usage is
very common for applications implementing custom protocols. In this case,

the application should try to choose a port number that is not in common use
to avoid conflict.

Clients and servers

In the telephone analogy, a call must be initiated first by one party. The
initiating party dials the number for the receiving party, and the receiving
party answers.

This is also a common paradigm in networking called the client-server
model. In this model, a server listens for connections. The client, knowing
the address and port number that the server is listening on, establishes the
connection by sending the first packet.

For example, the web server at exampie.con listens on port so (HTTP) and port
113 (HTTPS). A web browser (client) must establish the connection by
sending the first packet to the web server address and port.

Putting it together

A socket 1s one end-point of a communication link between systems. It's an
abstraction in which your application can send and receive data over the
network, in much the same way that your application can read and write to a
file using a file handle.

An open socket is uniquely defined by a 5-tuple consisting of the following:

e Local IP address
Local port
Remote IP address

Remote port
Protocol (UDP or TCP)

This 5-tuple is important, as it is how your operating system knows which
application is responsible for any packets received. For example, if you use
two web browsers to establish two simultaneous connections t0 exanpie.con ON
port so, then your operating system keeps the connections separate by looking
at the local IP address, local port, remote IP address, remote port, and
protocol. In this case, the local IP addresses, remote IP addresses, remote
port (s0), and protocol (TCP) are identical.

The deciding factor then is the local port (also called the ephemeral port),
which will have been chosen to be different by the operating system for
connection. This 5-tuple is also important to understand how NAT works. A
private network may have many systems accessing the same outside resource,
and the router NAT must store this five tuple for each connection in order to
know how to route received packets back into the private network.

What's your address?

You can find your IP address using the ipconrig command on Windows, or the
ifconfig command on Unix-based systems (such as Linux and macOS).

Using the ipcontig command from Windows PowerShell looks like this:

¥ Windows PowerShell - 0 X

PS C:\Users\honp> 1pconfig

Windows IP Configuration

Ethernet adapter Ethernet0:

Connection-specific DNS Suffix . : localdomain

Link-Tocal IPv6 Address : feB0::cd70:e700:5486:Fhla%s
IPv4 Address.:192.,168.182,133

Subnet Mask255.285.255.0

Default Gateway

Tunne] adapter 1satap. localdomain:

Media State . . . i
Connection-specific DNS Suffix . : localdomain

Tunne] adapter Local Area Connection® 2:

Connection-specific DNS Suffix . :
IPv6 Address. : 2001:0:9d38:6ab8:8ha:2c52:5950:c03c
Link-Tocal IPv6 Address : feB0::Bba:2c5a:5950:c03ck2
Default Gateway L
PS C:'\Users\honps

In this example, you can find that the IPv4 address is listed under ethernet
adapter Ethernet0. YOUI System may have more network adapters, and each will

have its own IP address. We can tell that this computer is on a local network
because the IP address, 192.165.182.133, 1s in the private IP address range.

On Unix-based systems, we use either the itconfig OF ip adar cOmmands.
The ifconfig command 1s the old way and is now deprecated on some systems.
The ip aaar command is the new way, but not all systems support it yet.

Using the ifconfig command from a macOS terminal looks like this:

800 # bob — bash — 80x20 g

Last login: Mon Sep 17 19:22:53 on ttys@od

ml:~ honp$ ifcenfig

loB: flags=8048<UP,LOOPBACK, RUNNING,MULTICAST= mtu 16384
options=3<RXCSUM, TXCSUM=
inett feB@::1%lo@ prefixlen 64 scopeid Bx1
inet 127.0.8.1 netmask @xffeooo0e
ineth ::1 prefixlen 128

gif: flags=B018<POINTOPOINT,MULTICAST= mtu 1288

stf@: flags=6<> mtu 1280

end: flags=BBE3<UP,BROADCAST, SMART, RUNNING, SIMPLEX,MULTICAST= mtu 1580
options=b=RXCSUM, TXCSUM, VLAN_HWTAGGING=
ether 00:8c:29:59:17:61
ineth feB@::20c:29f1:fe50:1761%end prefixlen 64 scopeid Ox4
inet 192,168.182.128 netmask @xffffff@@ broadcast 192.168.182.255
media: autoselect (1080baseT <full-duplex=)
status: active

ml:~ honp$ l

The IPv4 address is listed next to inet. In this case, we can see that 1t's
192.168.182.128. Again, we see that this computer is on a local network because
of the IP address range. The same adapter has an IPv6 address listed next to

ineto6.

The following screenshot shows using the ip asar command on Ubuntu Linux:

honp@ubby18: ~

honp@ubby18:~$ ip adar
1: To: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1660
1ink/loopback 00:00:60:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid 1ft forever preferred 1ft forever

2: ens33: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qadisc fq codel state UP group default qlen 1000
link/ether 60:0c:29:74:ba:ce brd ff:ff:ff.ff:ff:ff
inet 192.168.182.145/24 brd 192.168.182.255 scope global dynamic noprefixroute ens33
valid 1ft 1515sec preferred 1ft 1515sec
inet6 fe80::df60:954e:211:7ff0/64 scope link noprefixroute
valid _1ft forever preferred 1ft forever
honp@ubby18:~$ I

The preceding screenshot shows the local IPv4 address as 192.165.152.145. We
can also see that the link-local IPv6 address 1S feso::d60:954e:211:7¢¢0.

These commands, ifconfig, ip addr, and ipconfig, Show the IP address or
addresses for each adapter on your computer. You may have several. If you
are on a local network, the IP addresses you see will be your local private
network IP addresses.

If you are behind a NAT, there is often no good way to know your public IP
address. Usually, the only resort is to contact an internet server that provides
an API that informs you of your IP address.

A few free and public APIs for this are as follows:

® http://api.ipify.org/
® http://helloacm.com/api/what-is-my-ip-address/
® http://icanhazip.com/

® http://ifconfig.me/ip

You can test out these APIs in a web browser:

800 http:/ /api.ipify.org/)
4 b |+ @hop/apipify.org/ ¢ L Q- Google

107.77.85.86

Each of these listed web pages should return your public IP address and not
much else. These sites are useful for when you need to determine your public
IP address from behind an NAT programmatically. We look at writing a small
HTTP client capable of downloading these web pages and others in chapter s,
Building a Simple Web Client.

Now that we've seen the built-in utilities for determining our local IP
addresses, let's next look at how to accomplish this from C.

Listing network adapters from C

Sometimes, it 1s useful for your C programs to know what your local address
1s. For most of this book, we are able to write code that works both on
Windows and Unix-based (Linux and macOS) systems. However, the API for
listing local addresses is very different between systems. For this reason, we
split this program into two: one for Windows and one for Unix-based
systems.

We will address the Windows case first.

Listing network adapters on
Windows

The Windows networking API is called Winsock, and we will go into much
more detail about it in the next chapter.

Whenever we are using Winsock, the first thing we must do is initialize it.
This is done with a call to wsastartup). Here 1s @ small C program, win init.c,
showing the initialization and cleanup of Winsock:

/*win_init.c*/

#include <stdio.h>
#include <winsock2.h>
#pragma comment (1ib, "ws2 32.1ib")

int main() {
WSADATA d;

if (WSAStartup (MAKEWORD (2, 2), &d)) {
printf ("Failed to initialize.\n");
return -1;

}

WSACleanup () ;
printf ("Ok.\n");
return 0;

The wsastartup () function is called with the requested version, Winsock 2.2 in
this case, and a wsapara structure. The wsapara structure will be filled in by
wsastartup () With details about the Windows Sockets implementation.

The wsastartup () function returns o upon success, and non-zero upon failure.

When a Winsock program is finished, it should call wsacieanup ().

If you are using Microsoft Visual C as your compiler, then #pragna comment (11,
nws2_32.1ipm) tells Microsoft Visual C to link the executable with the Winsock
library, ws2 32.1in.

If you are using MinGW as your compiler, the pragma is ignored. You need to
explicitly tell the compiler to link in the library by adding the command-line
option, -1ws2_32. For example, you can compile this program using MinGW
with the following command:

|gcc win _init.c -o win_init.exe -lws2_32

We will cover Winsock initialization and usage in more detail in chapter 2,
Getting to Grips with Socket APIs.

Now that we know how to initialize Winsock, we will begin work on the
complete program to list network adapters on Windows. Please refer to the
win 1ist.c file to follow along.

To begin with, we need to define wrvs2 wiwr and include the needed headers:

/*win list.c*/

#ifndef WIN32 WINNT
fdefine WIN32 WINNT 0x0600
#endif

#include <winsock2.h>
#include <iphlpapi.h>
#include <ws2tcpip.h>
#include <stdio.h>
#include <stdlib.h>

The w32 wonr macro must be defined first so that the proper version of the
Windows headers are included. winsock2.h, iphipapi.n, and ws2tepip.n are the
Windows headers we need in order to list network adapters. We need stdio.n
for the prints () function and sta1iv.n for memory allocation.

Next, we include the following pragmas to tell Microsoft Visual C which
libraries must be linked with the executable:

/*win list.c continued*/

#pragma comment (1lib, "ws2 32.1ib")
#pragma comment (1ib, "iphlpapi.lib")

If you're compiling with MinGW, these lines will have no effect. You will
need to link to these libraries explicitly on the command line, for

e)ﬁlnlple, gcc win list.c -o win list.exe -liphlpapi -lws2 32.

We then enter the nain() function and initialize Winsock 2.2 using wsastartup ()

as described earlier. We check its return value to detect any errors:

/*win list.c continued*/
int main() {

WSADATA d;

if (WSAStartup (MAKEWORD (2, 2), &d)) {
printf ("Failed to initialize.\n");
return -1;

Next, we allocate memory for the adapters, and we request the adapters'
addl‘esses fr()m WindOWS llSIIlg the GetAdapterAddresses () fllnCtiOl'l:

/*win_ list.c continued*/

DWORD asize = 20000;
PIP_ADAPTER ADDRESSES adapters;
do {
adapters = (PIP_ADAPTER_ADDRESSES)malloc(asize);

if (ladapters) {
printf ("Couldn't allocate %1d bytes for adapters.\n", asize);
WSACleanup () ;
return -1;

}

int r = GetAdaptersAddresses (AF UNSPEC, GAA FLAG INCLUDE PREFIX, O,

adapters, &asize);

if (r == ERROR BUFFER OVERFLOW) {
printf ("GetAdaptersAddresses wants %$1d bytes.\n", asize);
free (adapters) ;

} else 1f (r == ERROR SUCCESS) {
break;

} else {
printf ("Error from GetAdaptersAddresses: %d\n", r);
free (adapters);
WSACleanup () ;
return -1;

}

} while ('adapters);

The =size variable will store the size of our adapters' address buffer. To
begin with, we set it to 20000 and allocate 20,000 bytes t0 adapters using

the na110c) function. The nai10c() function will return o on failure, so we test
for that and display an error message if allocation failed.

Next, we call cetagapteraddresses (). The first parameter, ar unseec, tells
Windows that we want both IPv4 and [Pv6 addresses. You can pass in ar_mer
or ar s to request only IPv4 or only IPv6 addresses. The second
parameter, can riac TncLUDE PREFTX, 1S Tequired to request a list of addresses.
The next parameter is reserved and should be passed in as o or vure. Finally,
we pass in our buffer, adapters, and a pointer to its size, asize.

If our buffer is not big enough to store all of the addresses, then
Gethdapteraddresses () T@TUINS error Burrer overrrow and Sets asize to the required
buffer size. In this case, we free our aqapters buffer and try the call again with
a larger buffer.

On success, cetadapteraddresses () TetUrns exror suvccess, 1IN which case, we break
from the loop and continue. Any other return value is an error.

When cetadapteradaresses () returns successfully, it will have written a linked
list into agapters With each adapter's address information. Our next step is to
loop through this linked list and print information for each adapter and
address:

/*win list.c continued*/

PIP ADAPTER ADDRESSES adapter = adapters;
while (adapter) {
printf ("\nAdapter name: %S\n", adapter->FriendlyName) ;

PIP_ADAPTER UNICAST ADDRESS address = adapter->FirstUnicastAddress;
while (address) {
printf ("\t%s",
address->Address.lpSockaddr->sa family == AF INET ?
"IPv4" : "IPve");

char ap[100];

getnameinfo (address->Address.lpSockaddr,
address—->Address.iSockaddrLength,
ap, sizeof(ap), O, 0, NI NUMERICHOST);

printf ("\t%s\n", ap);

address = address->Next;

}

adapter = adapter->Next;

We first define a new variable, agapter, which we use to walk through the
linked list of adapters. The first adapter is at the beginning of aqapters, SO We
initially set adaprer t0 adapters. At the end of each loop, we set adapter = adapter-
svext; 0 get the next adapter. The loop aborts when agapter 1S 0, which means
we've reached the end of the list.

We get the adapter name from adapter->rriendiynane, Which we then print using

printf ().

The first address for each adapter is in agapter->rirstunicastadaress. We define a
second pointer, addaress, and set it to this address. Addresses are also stored
as a linked list, so we begin an inner loop that walks through the addresses.

The address->Address.1lpSockaddr->sa family variable stores the address famlly
type. If it is set to ar rver, then we know this 1s an IPv4 address. Otherwise,
we assume it is an [Pv6 address (in which case the family is ar rwers).

Next, we allocate a buffer, ap, to store the text representation of the address.
The getnameinto () function is called to convert the address into a standard
notation address. We'll cover more about getnameinto () 1n the next chapter.

Finally, we can print the address from our buffer, ap, using prints ().

We finish the program by freeing the allocated memory and calling

WSACleanup ()

/*win list.c continued*/

free (adapters) ;
WSACleanup () ;
return 0;

}

On Windows, using MinGW, you can compile and run the program with the
following;

gcc win_list.c -o win_list.exe -liphlpapi -lws2_32
win list

It should list each of your adapter's names and addresses.

Now that we can list local IP addresses on Windows, let's consider the same
task for Unix-based systems.

Listing network adapters on Linux
and macOS

Listing local network addresses is somewhat easier on a Unix-based system,
compared to Windows. Load up unix 1ist.c to follow along,

To begin with, we include the necessary system headers:

/*unix_list.c*/

#include <sys/socket.h>
#include <netdb.h>
#include <ifaddrs.h>
#include <stdio.h>
#include <stdlib.h>

We then enter the nain function:

/*unix_list.c continued*/
int main() {
struct ifaddrs *addresses;
if (getifaddrs(&addresses) == -1) {

printf ("getifaddrs call failed\n");
return -1;

We declare a variable, aadaresses, which stores the addresses. A call to the
getifaddrs () function allocates memory and fills in a linked list of addresses.
This function returns o on success or -1 on failure.

Next, we use a new pointer, address, to walk through the linked list of
addresses. After considering each address, we set aaaress = address->ifa next tO

get the next address. We stop the loop when adaress == o, which happens at the
end of the linked list:

/*unix list.c continued*/

struct ifaddrs *address = addresses;

while (address) {
int family = address->ifa addr->sa family;
if (family == AF INET || family == AF INET6) {

printf ("$s\t", address->ifa name);
printf ("%s\t", family == AF INET ? "IPv4" : "IPv6");

char ap[100];
const int family size = family == AF INET °?
sizeof (struct sockaddr in) : sizeof (struct sockaddr in6);
getnameinfo (address->ifa addr,
family size, ap, sizeof(ap), 0, 0, NI NUMERICHOST)
printf ("\t%s\n", ap);

}

address = address->ifa next;

For each address, we identify the address family. We are interested in ar et
(IPv4 addresses) and ar mers (IPVv6 addresses). The getirfaddars) function can
return other types, so we skip those.

For each address, we then continue to print its adapter name and its address
type, IPv4 or IPv6.

We then define a buffer, ap, to store the textual address. A call to the
getnameinfo () function fills in this buffer, which we can then print. We cover

the getnameinfo() function in more detail in the next chapter, chapter 2, Getting
to Grips with Socket APIs.

Finally, we free the memory allocated by getifaaars() and we have finished:

/*unix_list.c continued*/

freeifaddrs (addresses) ;
return 0;

On Linux and macOS, you can compile and run this program with the
following;

gcc unix list.c -o unix list
./unix list

It should list each of your adapter's names and addresses.

Summary

In this chapter, we looked briefly at how internet traffic is routed. We learned
that there are two Internet Protocol versions, IPv4 and IPv6. IPv4 has a
limited number of addresses, and these addresses are running out. One of
[Pv6's main advantages is that it has enough address space for every system
to have its own unique publicly-routable address. The limited address space
of IPv4 is largely mitigated by network address translation performed by
routers. We also looked at how to detect your local IP address using both
utilities and APIs provided by the operating system.

We saw that the APIs provided for listing local IP addresses differ quite a bit
between Windows and Unix-based operating systems. In future chapters, we
will see that most other networking functions are similar between operating
systems, and we can write one portable program that works between
operating systems.

It's OK if you didn't pick up all of the details in this chapter. Most of this
information 1s a helpful background, but it's not essential to most network
application programming. Details such as network address translation are
handled by the network, and these details will not usually need to be
explicitly addressed by your programs.

In the next chapter, we will reinforce the ideas covered here by introducing
socket-programming APIs.

Questions

Try these questions to test your knowledge from this chapter:

1.

What are the key differences between [Pv4 and IPv6?

2. Are the IP addresses given by the ipconfig and ifconfig commands

whn B~ W

the same IP addresses that a remote web server sees if you connect
to 1t?

. What is the IPv4 loopback address?
. What is the IPv6 loopback address?
. How are domain names (for example, examp1e.com) resolved into IP

addresses?

. How can you find your public IP address?
. How does an operating system know which application is

responsible for an incoming packet?

The answers are in appenaix a, Answers to Questions.

